New England Restructuring Roundatble

Transmission System Evolution for Decarbonizing New England

Bob Kump Deputy CEO & President, AVANGRID INC.

~\$34 billion in assets with operations in 24 states

3rd largest wind operator in the U.S. ~7.3 GW Wind & Solar in operation ⁽¹⁾

Investing ~\$11.8B in a Smarter & Cleaner Energy Future in '19-'22 with goal of carbon neutral by 2035⁽²⁾

(1) As of 12/31/2019, including JVs.(2) February 26, 2019 Long Term Outlook update

(1) Excluding AFUDC

Lowest cost solution to deliver hydro to NE

- 1,200 MW Transmission project delivering
 Canadian hydro-power from Hydro-Québec
- CAPEX ~\$950M ⁽¹⁾
- Maine Land Use Planning Commission (LUPC)
 Site Law Certification received January 8, 2020
- Additional Approvals needed: Maine DEP, USACE, ISO-NE I.3.9 & Presidential Permit
- Expect start of construction 3Q '20
- Expect COD by year-end '22
- ✓ Significant benefits and jobs to NE
- ✓ Clean electricity for up to 1.5M homes
- CO2 emissions reduction of 3-3.6M tons, like 700,000 fewer cars on the road

Vineyard Wind Offshore (1)

US first utility-scale offshore wind project

Executed 800 MW PPA in MA RFP

- 15 miles off the coast of Massachusetts
- Project COD no earlier than 2023
- BOEM's Supplemental Environmental Impact by 11/13/20 & Record of Decision by12/18/20
- Other key permits have been secured

Also awarded 804 MW in CT Offshore RFP (Park City Wind

- Project COD expected by end 2025
- Establishes Bridgeport (CT) as offshore wind hub
- Creates jobs & direct economic benefits of ~\$890M
 - ✓ A new industry for East Coast
 - ✓ Clean electricity for up to 0.8M homes
 - ✓ Over 6,000 direct jobs created

⁽¹⁾ AVANGRID's 50/50 partnership with Copenhagen Infrastructure Partners (CIP).

Facilitating the evolution of the grid

Decarbonized grid means	 Up to 200 GW of additional capacity (renewables and storage) New load patterns require an automated and reconfigured grid to integrate DR, electric vehicles, heat pumps, renewables, etc. Expanding and incentivizing energy efficiency (HVAC, residential) Implementing energy storage technologies and enhancing demand response to provide flexibility and help meet future system balancing needs
Transmission will facilitate the energy transition	 Developing an offshore transmission network to accommodate large amounts of OSW > Over 3000 miles of offshore lines will be required to integrate approx. 15 to 24GW¹ Maximizing the use of on-shore renewable resources in the region Increasing transmission capacity with Canada from an energy, capacity and storage standpoint > 4GW of additional transmission is needed to balance intermittent resources²
But before let's	 Expand regional planning and cost allocation approach to meet our aggressive targets Ensure correct price signals for capacity and ancillary services Introduce more competition in transmission across the region for both onshore and offshore opportunities State and Federal coordination to reduce permitting and siting risks. Leaving developers to navigate through these key areas is inefficient and leads to unachieved targets In Chile for instance the government and an independent planning authority defines the scope of the project, provides a preferred route and works with the awarded developer on permitting and siting Further enhancement/automation of T&D grid.

2 - MIT – Two-way Trade in Green Electrons: Deep Decarbonization of the Northeastern U.S. and the Role of Canadian Hydropower

5